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Abstract— An analysis of laminar forced-convection heat-transfer in a horizontal pipe was performed for the
case in which the flowing fluid loses heat to the external environment by natural convection and radiation.
The temperature difference between the pipe wall and the ambient varies along the pipe. Since the external
natural-convection heat-transfer coefficient depends on this temperature difference, it, too, varies along the
pipe. The accounting of this variation is a special feature of the analysis. It was found that whereas the pipe
Nusselt number is generally insensitive to the variation of the external convection coefficient, a constant-
Nusselt-number thermally developed regime does not exist. Radiation tends to lower the pipe Nusselt
number, but the maximum effect is only 10%. The wall and bulk temperature distributions are
generally more responsive to variable external convection than is the Nusselt number. This responsiveness is

diminished when radiation plays an important heat loss role.

NOMENCLATURE
Biot number, hr,/k;;
local pipe  heat-transfer
a/(Ty, — T,);

coefficient,

circumferential average natural-convection

coefficient, based on (T, — T,),;

constant natural-convection coefficient;

thermal conductivity of inner fluid;
thermal conductivity of outer fluid;
pipe Nusselt number, h{2r,)/k;;

Peclet number of inner fluid, a(2r)/a;

Prandtl number of outer fluid;

local heat flux based on inside area;
local Rayleigh number based on (T, —

equation (6);

T‘l )X’

Rayleigh number based on (T, — T,),

equation (7);

radial coordinate;

inner radius of pipe;

outer radius of pipe;
temperature;

bulk temperature;

wall temperature;

inner fluid temperature at inlet;
ambient temperature;

mean velocity of inner fluid;
dimensionless coordinate (x/r;)/Pe;
axial coordinate.
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Greek symbols

a, thermal diffusivity of inner fluid ;
g, emissivity of outer pipe surface;

n, dimensionless coordinate, r/r;;

8, dimensionless temperature, (T - T. )/
(Tl - T:x);

8,,  dimensionless bulk temperature, (T, — T.,)/
(TI - Tx) B

8,.  dimensionless wall temperature, (T, — T,.)/
(ry = T,);

o, Stefan-Boltzmann constant;

@, function of Prandtl number, equation (5a).

1, INTRODUCTION

MosT ANALYSES of forced-convection heat transfer in
pipes are predicated on the assumption that a great
deal of information is known at the pipe wall. In this
connection, it may be noted that prescribed wall
temperature and prescribed wall heat flux are the most
common boundary conditions for pipe-flow heat-
transfer analysis. If there is convective heat exchange
between the outer surface of the pipe and a fluid
environment, it is assumed that the value of the
external heat-transfer coefficient is known a priori and
is normally taken to be a constant.

In reality, the amount of a priori information
available is frequently less than that which is employed
in pipe-flow heat-transfer analyses. For example, con-
sider a fluid flowing through a horizontal pipe which
loses heat by natural convection from its outer surface
to a large external fluid environment. If the tempera-
ture of the internal flow is higher than that of the
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environment, both the bulk and wall temperatures will
decrease in the flow direction. Since the external
natural convection is controlled by the difference
between the local wall temperature and the ambient
temperature, the external heat-transfer coefficient will
also decrease in the flow direction. However, the axial
distribution of the wall temperature is not known a
priori; rather, it is a result of the interaction between
heat-transfer processes internal and external to the
pipe. Therefore, in this situation, the external heat-
transfer coefficient is not known a priori.

The foregoing discussion identifies one of the foci of
the present research, namely, pipe-flow problems with
interactively determined thermal boundary con-
ditions. Specific consideration is given to the very
problem discussed above. A laminar, forced-
convection flow enters a horizontal pipe which is
situated in an extensive fluid environment at tempera-
ture T,. Heat loss occurs at the outer surface of the
pipe by natural convection. The resulting axial va-
riation of the wall temperature affects both the heat-
transfer characteristics of the pipe flow and of the
external natural convection. In the analysis presented
here, the energy-conservation equation for the pipe
flow is solved subject to a wall-boundary condition
which accommodates the interactively determined
variations of the natural convection heat-transfer
coefficient.

If the fluid external to the pipe is a gas such as air,
then radiative transfer may supplement the natural-
convection heat loss from the outside surface of the
pipe. The extent of the radiative contribution depends
on the emissivity of the surface and on the temperature
level. Even for moderate temperatures, the radiative
transfer will equal that for natural convection when the
emissivity is ~ 1. Therefore, when the external environ-
ment is a gas, a realistic thermal boundary condition
for the pipe-flow problem should account for both
natural convection and radiation.

The second focus of the present research is to solve
the forced-convection pipe flow subject to simul-
taneous external natural-convection and radiation.
The solutions involving radiative transfer will in-
corporate the interactively determined variations of
the natural convection heat-transfer coefficient.

An appraisal of the governing equations reveals a
superabundance of prescribable parameters. In the no-
radiation case, there are three prescribable parameters,
whereas with radiation there are a total of five
parameters. In view of the lengthy numerical com-
putations that are required for each case, the para-
meter values were selected to be representative but not
necessarily complete.

In addition to the solutions discussed above (i.e.
characterized by variable external convection without
and with radiation), it was deemed appropriate, for
comparison purposes, to obtain results for the case
where the natural-convection coefficient is constant
and prescribed a priori. These supplementary solutions
will be designated as the constant Biot number

solutions, and they were obtained both without and
with radiation.

A survey of the literature on forced-convection pipe
flow did not reveal any prior work on either of the
main lines of the present research. There is, of course,
related work which forms the background for the new
effects that were investigated here. The problem of
laminar pipe flow with a constant, a priori prescribed
external heat-transfer coefficient has been solved by a
number of investigators using a variety of solution
methods, for example [1-5]. Laminar pipe flow with
external radiation transfer (without natural convec-
tion) has also been analyzed and solutions obtained by
using several different approaches [6-9].

2. ANALYSIS

2.1. Mathematical formulation

Consider a laminar fluid flow in a horizontal
circular pipe in which x is the axial coordinate and r is
the radial coordinate; the inner and outer radii of the
pipe wall are r; and r,, respectively. At x = 0, the fluid
temperature is uniform and equal to T,. For x > 0, the
outer surface of the pipe is exposed to a fluid environ-
ment where the temperature is T, (T, # T;). The
environment is free of fluid motions except for the
natural convection induced by the presence of the pipe.
If the fluid is a transparent gas (e.g. air), it is enclosed
by walls that are also at temperature T ,.

With regard to the velocity field in the pipe, it is
envisioned that there is a hydrodynamic-development
section upstream of x = 0. Therefore, in the heat-
transfer section, the velocity profile is fully developed
and equal to the Poiseuille parabola.

The pipe wall is assumed to be highly conducting so
that its temperature is circumferentially uniform at any
cross section; furthermore, the temperature drop
across the thickness of the wall is taken to be negligible.
Generalization of the analysis to include radial
temperature variations across the wall thickness can
readily be accomplished, but this would add still
another parameter to the already excessive number
that appear in the problem. The accounting of circum-
ferential variations would change the entire nature of
the solution task and is beyond the scope of the present
research.

The starting point for the analysis is the energy
conservation equation for the pipe flow. By introduc-
tion of dimensionless variables
L T v

. = — = e e

T, -T,’ a

(1
the energy equation becomes
a1 8/ a0
X nin\on

Note that axial conduction has not been included
because low Peclet-number flows are not being
considered.

(1 —n%
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The pipe-wall boundary conditions will now be
examined, and aitention will first be focused on
external natural convection, without radiation. Since
the wall temperature T, is circumferentially uniform,
the external heat-transfer coefficient that is needed for
the formulation of the boundary condition is the
circumferential-average value. This coefficient will be
denoted by h,;, to underscore the fact that it depends
on the local wall-to-ambient temperature difference at
x. Then, at any axial station x,

—kr(8T/0r), = harar (T, = Te) 3)
or, in terms of the dimensionless variables of (1)

- (ag/an)n =1 = [h—ATx(zro)/ka] (kn/kz)ow/z (4)

In this equation, k; and k, respectively denote the
thermal conductivities of the internal and external
fluids.

The quantity in brackets in equation (4) is the
circumferential-average natural convection Nusselt
number corresponding to a yet undetermined tem-
perature difference (T,, —~ T,),. At each axial station
x, this Nusselt number can be associated with that for
an isothermal cylinder with a uniform temperature
difference equal to (T, — T,.),. From a consideration
of the available information for natural-convection
heat transfer about an isothermal horizontal cylinder,
the recent correlation of Churchill and Chu [10]
appears to be the most encompassing. That correlation
is especially useful because it covers, with a single
algebraic relationship, Rayleigh numbers between
107 % and 10° and all Prandtl numbers. The correlating
equation is

Nu = 0.36 + 0.518Ra'"/¢(Pr), (5)
B(Pr) = [1 + (0.559/Pr)*/16]*>, (5a)

It should be noted that ¢(Pr) varies only moderately
with Pr, ranging from 1.32 for Pr = 0.7 to 1.0 as Pr —
o (very viscous oils).

In accordance with the foregoing discussion, equa-
tion {5) is to be applied locally in the evaluation of the
Nusselt number h,7(2r,)/k, that appears on the RHS
of the boundary condition (4). Correspondingly, the
Rayleigh number is interpreted as

Rax = gﬁ(Tw - Toc )x(zro)s/av (6)

where all properties refer to the external fluid. If the
dimensionless temperature 8 is introduced, Ra,
becomes

Rax = waRala Ral = gﬂ(Tl - Taa)(zro)s/av' (7}

The Rayleigh number Ra, corresponds to the overall
temperature difference (T; — T} at the start of the
heat-transfer section. This is the only temperature
difference which can be identified prior to the solution
of the problem since the wall and bulk temperatures

* With RHS(8) denoting the right-hand side of equation
(8).
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vary and are not known in advance. Therefore, Ra,,
being known a priori, can realistically serve as one of
the prescribable parameters.

Upon returning to the boundary condition {4} with
inputs from equations (5) and (7), there follows

—(06/2n)y =1 = 2[0.36 + 0.518Ra}™ 0,22/$](k,/k;)O,.
®)

Equation (8) is the final form of the boundary con-
dition for the pipe-flow problem when the external
heat loss is by natural convection. The novel feature of
the formulation can be identified by examination of
this equation. Since 8., decreases with x, so does 8%
and, as a consequence, the natural convection Nusselt
number [square bracketed terms of equation (8)]
decreases with x, giving rise to an increase of the
thermal resistance. It is in the accounting of this effect
that the present analysis differs from prior studies of
pipe flows with an external convective boundary
condition.

Further examination of the governing equations (2)
and (8) reveals the presence of three prescribable
physical parameters

Ray, k,/k, Pr. ]
The number of computational parameters can be
reduced by noting that the Rayleigh and Prandtl
numbers are grouped together in equation (8) in the
ratio Ral™/¢.

When radiative transfer takes place between the
outer surface and the environment, then an additional
term has to be appended to the RHS of equation (8). If
the pipe is situated in a space whose walls are at T,
and if the wall area is much larger than that of the pipe
surface, then the radiation filling the space is black
radiation corresponding to T . Furthermore, if the
surface of the pipe is gray with an emissivity ¢ then the
local radiative heat loss at x, per unit surface area, is

o&(Toe — T%). (10)

When this expression is incorporated into the local
heat balance at the wall, there follows*

er, T — T4 .
oer, Tux = T3 )

~(06/on),~, = RHS(8) + E T

Upon introduction of the dimensionless tempera-
ture 6 into equation (11), there is obtained, after
rearrangement

3
~(26/0n),-, = RHS(8) + (%—) [wz’r"}
x [ewx(Tl/Tcu - l-) + 1]4 -1

TJT, ~1 '

Examination of equation (12) reveals that the account-
ing of radiative transfer has added two additional
parameters, namely

&o Tiro/l koa

i/

(12)

Ty/Ty. (13)
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If «aT? is regarded as a radiation heat-transfer
coefficient, then ¢T3 r jk, has the appearance of a
radiation Nusselt number. The larger the value of this
parameter, the greater the strength of the radiative
transfer. The radiation contribution is also streng-
thened by increasing values of T'/T, provided that
.. 1s not too small.

Equation (2) along with either of the pipe-wall
energy balances (8) or (12) constitute the governing
equations for the pipe-flow problem with interactively
determined thermal-boundary conditions. To these is
added the initial condition § = 0 at x = 0. The
solution methodology for these equations will be
described shortly.

2.2. Simplified external-convection model

For comparison with the present results, solutions
were also carried out for a simpler model of the
external natural convection, namely, for the case in
which the external-convection coefficient is uniform
and known a priori. In implementing such a model,
consideration has to be given to how the convection
coefficient, which depends on T, — T, is to be
selected. As noted earlier, T, — T, varies with x,
beginning with an initial value T, — T, at x = Oand
decreasing (i.e. when T, > T, ) toana priori unknown
final value at the downstream end of the pipe. Since T,
- T, is the only wall-to-flutd temperature difference
that is known in advance, it will be used to evaluate the
given constant value of i, which will be denoted by &.

For convective heat loss corresponding to the
uniform and known external coefficient i, the pipe-
wall heat balance becomes

~A20/¢n), - = hry/k) 0, = Bil,, (14)

which contains only one parameter, the Biot number
Bi. When radiation supplements natural convection,
equation (14) becomes

R . eaT3r,
~(0/cn),. , = Bil,, + .

[()wx(Tij?“r - 1) + 1]4 -1
x - L .

: 15)
T /T, -1 (13)

in which three prescribable parameters are in evidence.

To compare the results from the constant Biot-
number model with those for the more general natural-
convection model formulated earlier, Bi is evaluated
from

Bi = 1(0.36 + 0.518Ral */p)(k,/k)  (16)

and the radiation parameter of equation (15) follows
from

eo T vk = (so T r Jh )k ik, (17)

The values of Ra,, Pr, k,jk;, and toT3r,/k, which
(along with T,/T,) define a given case for the
generalized problem were introduced into equations
(16) and (17) to fix the comparison case for the
simplified model.
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2.3. Solution methodology

The numerical solutions were carried out by adapt-
ing the Patankar-Spalding (P-S) method to the
governing equations of the present problem. Two of
the adaptations will be discussed here. It should be
noted that the P- S method is an implicit marching
procedure which is formulated to solve a set of N finear
algebraic equations at each forward step. Neither the
convective nor the radiative boundary conditions of
the present problem are linear, so that some adap-
tation is needed. Provided that a sufficiently smail
forward step size AX is employed, the boundary
conditions can be locally linearized in a simple fashion
without significant loss of accuracy. For example, if
computations are being performed at an axial station
X ;, then the 0, that appears in the square brackets of
equation (8) can be evaluated using the known value
(te. known from the preceding calculations) of 4, at
X;_;. Although exceedingly small steps were em-
ployed in the present calculations, it was decided to
employ a more refined local linearization to ensure
that no perceptible error would occur.

To this end, let G(0,,) denote any one of the
expressions which appear on the RHSs of equations
{8}, {12}, or {15}. Also, for compactness, let §,, at X ; be
8, and 0, at X;_; be §;,_,. Then, at X, the boundary
condition can be approximated as

—(0/0n),=, = GO, ) + G'(0;_ )0, — 0,_,)  (18)

where &' = (G/08,,, represents the algebraic ex-
pression obtained by differentiating G with respect to
8,.x- Since ¥, i1s known from the calculations at the
prior step, equation (18) is a linear form which is
acceptable to the P-S method. By making X; — X,
sufficiently small, the error associated with the local
linearization can be made altogether negligible, as was
verified in the computations.

The other adaptation had to do with ‘tuning’ the
program with regard to both step size and deployment
of the grid points. To this end, it was found useful to
make comparisons with the eigenvalue solution of [2]
for constant Biot number and no radiation. With only
ten eigenvalues available, that solution is limited to the
downstream portion of the pipe. In that region, the
local Nusselt numbers from the present solutions
agreed to within 0.01%, with those from the eigenvalue
solutions. The final computer runs were made with 200
points in the cross section and at about 10000 axial
stations.

3. RESULTS AND DISCUSSION

The cases for which numerical solutions were car-
ried out are listed in Table 1. In the table, cases A,
B..... I refer to situations where the external natural
convection is determined interactively, whereas A’
B, .., I are the corresponding constant Biot-number
comparison cases. Solutions accounting for natural-
convection heat loss were performed for each of the
tabulated cases, and solutions involving simultaneous
natural convection and radiation were obtained for the
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Table 1. Parameter values for the computations

Case k,/k; Ral*/¢ Bi (k,/k)*
A 1 24

A’ 0.80 1

B 1 75

B’ 2.1 1

C i 134

(o4 3.7 1

D 1 239

D 6.4 1

E 1 425

E’ 11.2 1

F 0.05 134

F 0.18 0.05
G 0.2 134

G’ 0.73 0.2
H 5 159

H’ 215 5

I 20 159

I 85.8 20

Radiation cases T,/T, = 1.25, eaT3r,/k, = 1.
* For input to equation (17) only.

majority of these cases, as will be seen shortly. The
tabulated values of Ra}**/¢ are not simple integer-type
numbers. This is because the computations were
originally performed for specified values of Ra, and Pr,
and the group Ral™*/¢ was subsequently evaluated.
Results will be presented for the axial distributions
of three quantities: the local pipe-flow Nusselt number
Nu, the local bulk temperature 8, = (T, — T )T, —
T, ), and the local wall temperature 8,, = (T,, — T, )/
(T, — T.). The local Nusselt number is defined as

Nu = h(2r)/k, h=g/(T,-T,) (19)

where g is the local heat flux per unit inside pipe-wall
area.
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The reason for presenting the wall- and bulk-
temperature distributions in addition to the Nusselt
number is apparent from equation (19). Since g, T,,
and T, are all unknown at any axial station, a
knowledge of the Nusselt number (or h) is insufficient
to determine any of these quantities. Rather, two
among ¢, T,, and T, have to be given in addition to
Nu.

3.1. Nusselt number distributions

Axial distributions of the local pipe-flow Nusselt
number are presented in Figs. 1-3. Figure 1 is for k /k;
=1, that is, the same fluid inside and outside the pipe.
Figures 2 and 3 are, respectively, for cases where k /k;
< 1 and k,/k; > 1. Each figure conveys results for
numerous cases and it is, therefore, appropriate to
describe the structure of the figures.

Consider, for example, Fig. 1. The main part of the
figure gives results at axial positions between X of
0.002 and 1, while the inset at the upper right extends
the results back to X = 0.0004. The curves are grouped
according to the designations in Table 1,e.g. A,A", B,B’,
etc. with a given unprimed case being paired with the
corresponding primed case. At the lower left, a legend
describes the characteristics of each curve. The de-
signation Ra, means that the external natural con-
vection is determined interactively, while Bi means
that the Biot number is prescribed and constant ; RAD
and W/O RAD are self explanatory. Curves E,E’ are
referred to the outer (leftmost) left-hand ordinate,
while curves B,B' refer to the inner left-hand ordinate;
curves A A’ are read from the right-hand ordinate. A
similar structural description also applies to Figs. 2
and 3.

The major issues to be examined in Figs. 1-3 are: (1)
the response of the pipe Nusselt number to the axial

Ra,,W/0 RAD

Bi ,W/0 RAD
[ L1t [

.002 .0l

X

FI1G. 1. Local Nusselt-number distributions for cases A and A’, B and B’, and E and E’ (all with k,/k; = 1),
without and with radiation.
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Nu

LEGEND
SEE FIG.|

§ I S ] |

.004 .0l

Fi6. 2. Local Nusselt-number distributions for cases F and F', and G and G’ (all with k,/k, < 1), without and
with radiation.

variations of the interactively determined external
natural convection, (2) the effect of external radiative
transfer, (3) the existence or nonexistence of a ther-
mally developed regime in the presence of external
non-linear heat transfer, either by natural convection
or radiation, (4) the effect of k,/k;, Ra}’*/¢, and Bi on
the magnitude of Nu.

Examination of Figs. 1-3 reveals that the cor-
responding Ra, and Bi Nusselt-number distributions
are essentially identical, except in the far downstream
region for certain selected cases. The Nusselt number

is, therefore, insensitive to whether the external con-
vection coefficient remains constant at its initial (i.e. x
= 0) value or decreases with x as T,, — T, decreases.
This outcome is especially noteworthy since, as will be
seen shortly, the ingredients which make up s do
respond to the details of the external convection.
An even more convincing demonstration of the
forgiving nature of Nu (or h) to the external transfer
may be seen by examining the effects of radiation in
Figs. 1-3. It is seen that there are deviations between
the with-radiation and no-radiation cases in the lower

A
Ra,, W/O RAD ™\

4L ——— Bi, W/O RAD

I T | !

L 1 -7 i it it

6oz .

A !

FiG. 3. Local Nusselt-number distributions for cases H and H', and I and ¥/ (all with k /k;, > 1), without
radiation.
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ranges of the quantities Ra}’*/¢ and Bi(k,/k,). The
extreme deviation between the results is about 109
(cases A or A’). This deviation will be shown to be
moderate compared with the impact of radiation on
T,orT,

Thus, from the foregoing, it appears that because of
compensating variations among its component parts,
the heat-transfer coefficient is relatively insensitive to
the details of the external boundary condition.

There are a number of thermal boundary conditions
which give rise to a thermally-developed regime in
which Nuisindependent of x, and all of these appear to
be linear [11]. The present solutions provide an
opportunity of examining the possible presence of a
constant Nusselt number regime when the boundary
conditions are non-linear.

Inspection of the downstream (large X) portion of
Figs. 1-3 shows that for non-linear natural convection,
the curves (i.e. the Ra, curves) tend to attain a shallow
minimum and then rise very gradually. For the largest
X of the graphs, the deviations due to the rise are very
small-—just a few per cent. Interestingly enough, the
presence of radiation does not, in itself, give rise to the
just mentioned behavior. Indeed, for radiation and
linear natural convection, the plotted curves are flat,
although the higher significant figures of the computer
print-outs show a tendency for Nu to increase with X.
The existence of an apparent thermally developed
regime in the presence of radiation is a major surprise.

The effect of the parameters on the magnitude of Nu
will now be discussed. In [11], for the case of Bi =
constant and thermally-developed conditions, it was
shown that Nu decreases with increasing Bi, the overall
decrease of Nu being about 199 as Bi ranges from 0 to
o0. Inspection of Figs. 1-3 reveals a similar trend at
any given axial station in the development regime ; that
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is, Nu decreases as either (k,/k;)(Rai’*/¢) or Bi in-
crease. The range of the decrease is within the afore-
mentioned 19%. Radiation, which comes to greater
prominence when Ral/*/¢ or Bi/(k,/k;) is small, tends
to decrease the Nusselt number, but by 10% at most.

3.2, Wall and bulk temperature distributions

The results for the axial distributions of the wall and
bulk temperature are presented in Figs. 4-10. The
initial discussion will be focused on Figs. 4-6, which
show results for k,/k; = 1 (same inner and outer fluid},
respectively corresponding to cases A and A', Band B/,
and E and E’. When radiation is not taken into
account, these results pertain to any fluid provided
that the parametric values of Ral*/¢ or Bi are
appropriate. The no-radiation results of Figs. 4-6 can
be so interpreted. On the other hand, if comparisons
are to be made between no-radiation and with-
radiation results for otherwise identical conditions,
then the external fluid must be a transparent gas. For
concreteness in the discussion of radiative effects, it will
be assumed that the outside fluid is air (Pr = 0.7) and,
correspondingly, for Figs. 4-6, the inner fluid is also
air.

Figures 4-6 have a common structure. In each
figure, the 0,, and 8, curves for a specified non-
radiative situation are plotted in the upper portion,
and the 0, and 8, curves for the corresponding with-
radiation situation are shown in the lower portion. The
upper curves are referred to the right-hand ordinate,
while the lower curves are referred to the left-hand
ordinate. Solid and dashed lines are respectively
employed to denote variable external natural con-
vection and uniform external natural convection. For
the interpretation of the figures, it should be noted that
the value of Ra}’*/¢ and Bi are relatively smali for Fig.

0

.0001 00! el

FiG. 4. Wall- and bulk-temperature distributions for cases A and A’, without and with radiation.
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O

.000!1 001

Fic. 5. Wall- and bulk-temperature distributions for cases B and B', without and with radiation.

4 and increase successively in Figs. 5 and 6.

First considering Fig. 4 and focusing on the no-
radliation case, it is seen that both the bulk and wall
temperatures decrease rather slowly with X and that
the difference between 8, and 6,, is not very large. This
is due to the relatively low rates of heat transfer
associated with the weak external convection. When
radiation is brought into play (lower diagram of Fig.
4), it provides a much more effective heat-loss path
than that provided by the external convection. As a
consequence, both the wall- and bulk-temperature
curves drop off more rapidly, especially the former.

The importance of variable external convection is
affected by the presence or absence of radiation.
Without radiation, the results show some sensitivity to
variable external convection, but when radiation acts,
the external convection becomes of lesser importance,
as does its variability.

When the external convection is stronger (Fig. 5),
the aforementioned trends are modified. In the no-
radiation case, the wall and bulk temperatures drop off
more rapidly than before. Furthermore, the effect of
variable external convection is heightened, especially
with regard to the wall temperature. The augmented

F1G. 6. Wall- and bulk-temperature distributions for cases E and E', without and with radiation.
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CASES
c,c

W/0 RAD

CASES
D,D’

W/0 RAD

.6
T
4 S
— Ra,
2k T7H
0 1 1L 1 [} [
000l [e]e]] .0l | |
X

Fic. 7. Wall- and bulk-temperature distributions for cases C and C', and D and D, without radiation.

role of variable external convection can be understood
by examining the square bracket of equation (8) and
noting that the role of the constant term is washed out
as Ral’*/¢ isincreased. When radiation is involved, the
heat-transfer rates increase, causing more rapid
changes in 6,, and 6, ; as before, the effect of variable
external convection is muted.

Figure 6 corresponds to a case of relatively strong
external convection. The no-radiation situation shows
rapid drop-offs in 8,, and 6, as well as moderately
important influences of variable external convection,
especially with regards 6,,. When radiation is brought

into play, its effect is much less than at lower values of
Rai'*/¢ or Bi.

The presentation of results for the case of k,/k; = 1
(same inner and outer fluid) is completed by Fig. 7. In
this figure, 6,, and 8, distributions are plotted for cases
C and C and for cases D and D', all for external natural
convection without radiation. The trends in evidence
in this figure are in agreement with those discussed in
the foregoing paragraphs and need no elaboration.
Figure 7 is included in order to provide information at
a sufficient number of Ra}’*/¢ values to permit
accurate interpolations.
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F1G. 8. Wall- and bulk-temperature distributions for cases F and F’, without and with radiation.
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0

.000!I

FiG. 9. Wall- and bulk-temperature distributions for cases G and G’, without and with radiation.

Attention is next turned to situations where k,/k; #
1. Consideration is first given to cases F,F' and G,G’,
which are characterized by k,/k; < 0. The no-radiation
results for these cases are applicable to any fluid
combinations which match the parameter values, but
for discussing the radiation results it is convenient to
think of cases F.F’ as water inside-air outside and of
cases G,G’ as oil inside-air outside.

The wall- and bulk-temperature results for these
cases are presented in Figs. 8 and 9 using a format
identical to that of Figs. 4-6. The general trends in
these figures are the same as those of the earlier figures,

but certain details are worth noting. Owing to the
relatively low values of (k,/k;) (Rai’*/¢) or of Bi, the
external natural convection is quite weak and the rate
of heat loss is correspondingly low when radiation
does not participate. Also, the results are moderately
sensitive to variable external convection. When ra-
diation acts, the heat-transfer rate is appreciably
augmented as witnessed by the more rapid drop-off of
the curves and the diminished sensitivity to variable
external convection.

Results for k,/k; > 1 comprise the final item in the
presentation of results-—specifically, cases H and H’

B

B cases
1,1

4~ W/0 RAD

I === ="F=

—— Ray

---- Bi

6y

.0l

X

F1G. 10. Wall- and bulk-temperature distributions for cases H and H', and 1 and I', without radiation.
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and cases I and I' of Table 1. These cases were selected
to characterize the presence of a liquid external to the
tube with a conductivity much higher than that of the
internal fluid. Appropriately high values of (k,/k;)
(Ral’*/¢) and of Bi can be noted in Table 1. The main
features of the results shown in Fig. 10 are the
evidences of the high rates of heat transfer and low
external thermal resistance. The wall and bulk tem-
peratures diminish rapidly, and the wall temperature
takes on values that do not differ much from those of
the ambient. Thus, as an approximation, cases such as
these can be treated as if the wall temperature were
uniform and equal to T,. The variability of the
external convection has little effect on the heat transfer
rates (i.e. on 6,) because the major resistance to heat
transfer is in the fluid flowing within the tube.

4. CONCLUDING REMARKS

One of the main findings that has emerged from the
presentation of results is the insensitivity of the pipe
Nusselt number to nonlinear external natural con-
vection or to radiation. The Nusselt numbers are
essentially the same regardless of whether the external-
convection coefficient remains constant at its x = 0
value or varies with x as T,, — T changes. When the
external convection is weak, radiation tends to de-
crease the Nusselt number slightly, with the change
being 109, at most.

The nonlinear external convection appears to pre-
clude a constant Nusselt number regime, as is nor-
mally encountered in a thermally developed pipe flow.
Rather, in the downstream portion of the pipe, the
Nusselt number curve attains a shallow minimum and
then rises slowly. The extent of the rise is, at most, only
a few per cent at the farthest downstream position
examined. The magnitudes of the Nusselt number are
moderately affected by changes in either (k,/k;)
(Ral”/¢) or Bi, decreasing as these quantities increase.

The wall- and bulk-temperature distributions are
generally more responsive to variable external con-
vection than is the Nusselt number. The distribution
curves for the variable-convection case drop off more
slowly with x than do those for the corresponding
constant Biot number case. Radiation has two in-
fluences on the distributions. First, when radiation is
present, the wall and bulk temperatures drop off more

rapidly than when there is negligible radiation. Se-
cond, radiation tends to diminish the sensitivity of the
results to variable natural convection. The role of
radiation is accentuated when the external convection
is relatively weak.
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CONVECTION FORCEE DANS UN TUBE HORIZONTAL AVEC
A L’EXTERIEUR CONVECTION NATURELLE NON
LINEAIRE ET RAYONNEMENT

Résumé— Une étude de la convection thermique laminaire forcée dans un tube horizontal est menée dans le
cas de pertes externes par convection naturelle et rayonnement. La différence de température entre la paroi
du tube et 'ambiance varie longitudinalement. Puisque le coefficient de convection naturelle dépend de cette
différence de température, il varie lui aussi le long du tube et on en tient compte d’une fagon particuliére. On
trouve que tant que le nombre de Nusselt est généralement insensible a la variation du coefficient de
convection externe, il n’existe pas un nombre de Nusselt constant de régime thermiquement établi. Ce
rayonnement tend a diminuer le nombre de Nusselt du tube, mais le maximum d’effet est seulement proche de
10%. Les distributions de température de la paroi et du fluide sont généralement plus sensibles a la
convection externe variable que n'est le nombre de Nusselt. Cette sensibilit¢ diminue lorsque le rayonnement
joue un role important dans la perte thermique.
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ERZWUNGENE KONVEKTION IN EINEM HORIZONTALEN ROHR IN
VERBINDUNG MIT NICHTLINEARER NATURLICHER KONVEKTION UND
MIT STRAHLUNG AUF DER AUBENSEITE

Zusammenfassung—Der Wairmeiibergang durch erzwungene Konvektion bei laminarer Stromung im
waargerechten Rohr wurde untersucht, und zwar fiir den Fall, daB das strémende Fluid an die duBere
Umgebung durch natiirliche Konvektion und durch Strahlung Wirme abgibt. Die Temperaturdifferenz
zwischen der Rohrwand und der Umgebung dndert sich entlang des Rohres. Da der Wirmeiibergangskoeffi-
zient der natiirlichen Konvektion an der AuBlenseite von dieser Temperaturdlfferenz abhingt, dndert auch er
sich tiber die Rohrlange Die Beriicksichtigung dieser Anderung ist ein besonderes Merkmal der Analyse. Es
wurde gefunden, daB ein thermisch ausgebildetes Profil mit einer konstanten Nusselt-Zahl nicht existiert,
obwohl die Nusselt-Zahl der Rohrstrdmung im allgemeinen doch unempfindlich gegeniiber Veridnderungen
des duBeren Wirmetiberganges ist. Die Strahlung neigt dazu, die Nusselt-Zahl der Rohrstromung zu
erniedrigen, wobei die maximale Auswirkung aber nur 109 betrdgt. Die Verteilung der Wand- und der
Mitteltemperatur hdngen im allgemeinen stirker als die Nusselt-Zahl von verdnderlicher duBerer
Konvektion ab. Diese Abhéngigkeit vermindert sich jedoch, wenn ein wesentlicher Teil der Wirmeverluste
durch Strahlung verursacht wird.

BbIHYX/IEHHASl KOHBEKLIMA B TOPU3OHTAJILHOM TPYBE B YCJIOBUAX
HEJJMHEAHON BHEMHENA ECTECTBEHHOW KOHBEKIIMW W U3JIVUEHUS

Aunnotauns — [1poBe/ieH aHaNH3 NaMHHAPHOTO NEPEHOCA TeNJId BHIHYXKIAEHHO! KOHBEKUHER B FOPHIOH-
TanbHOi TPyOe B Cilydae, KOTa NEPEHOC TEMJIA OT NMOTOKA KMIAKOCTH B TPybe BO BHEILHIOW OKpyXa-
IOILYHO CPefly MPOMCXOJMT €CTECTBEHHOH KOHBEKUHeH M u3nyveHHeM. Pa3HOCTL TeMmepaTyp Mexay
creHxo# TpyOwl M OkpyxXarouieH cpenoif H3IMeHsnach no anuue tpybnt. Tlockonsxy xod(dundent
BHELUHETO TEMJ000MEHa €CTeCTBEHHOH KOHBEKIHEH 3aBHCHT OT DA3HOCTH TeMnepaTyp. OH Takxe
H3MEHICH N0 jUIHHE TPYOst. YHET 3TOr0 HIMEHEHHS COCTABIAET OCOBCHHOCTL PACCMOTPEHHOI 3a4aUH.
Tax kak wncno Hyccenpra Ans TpyOb MOMTH HE HIMEHACTCH C H3MEHEHHMEM KOO(QHIHEHTA BHEIIHEro
KOHBEKTHBHOTO Tenioo0MeHa, TO TepMUUECKH Pa3BHTBHIH PEXHM C NOCTOSHHEIM uMciaoM Hyccenbra
orcyrcTsosan. HManyyenue nonmxkano snasenue umcna Hyccenwbra as TpyGui, Ho ue Gosee weMm Ha
10°,. M3meHeHne BeMMHMHBI BHEUWIHETO KOHBEKTHBHOrO NOTOKA TENAa OKa3nlBajio Odjbuice BAHAHME
Ha NPOQHIM TEMNEPATYphl CTEHKH W MOTOKA, 4eM H4 3HaueHus uucia Hyccenbta. IT0 BiMstHHe
CHHXAETCH C YBEJHHCHHEM MOTEPD TEIIA H3TyHEHHEM.



