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Abstract-An analysis of laminar forced-convection heat-transfer in a horizontal pipe was performed for the 
case in which the flowing Ruid loses heat to the external environment by natural convection and radiation. 
The temperature difference between the pipe wall and the ambient varies along the pipe. Since the external 
natural-convection heat-transfer coefficient depends on this temperature difference, it, too, varies along the 
pipe. The accounting of this variation is a special feature of the analysis. It was found that whereas the pipe 
Nusselt number is generally insensitive to the variation of the external convection coefficient, a constant- 
Nusselt-number thermally developed regime does not exist. Radiation tends to lower the pipe Nusseh 
number, but the maximum effect is only IO?;. The wall and bulk temperature distributions are 
generally more responsive to variable external convection than is the Nusselt number. This responsiveness is 

diminished when radiation plays an important heat loss role. 

NOMENCLATURE 

Biot number, h,,/ki; 

local pipe heat-transfer 

q/(7-b - T,,J; 

coefficient, 

circumferential average natural-convection 

coefficient, based on (T, - T, ),; 
constant natural-convection coefficient; 
thermal conductivity of inner fluid ; 
thermal conductivity of outer fluid; 

pipe Nusselt number, h(2ri)/ki; 

PecIet number of inner fluid, U(2rJcr; 

Prandtl number of outer fluid; 

local heat flux based on inside area; 
local Rayleigh number based on (T, - T il ),, 

equation (6) ; 
Rayleigh number based on (T, - T, ), 
equation (7) ; 
radial coordinate; 
inner radius of pipe; 
outer radius of pipe; 
tem~rature; 
bulk tem~rature; 
wall temperature; 
inner fluid temperature at inlet; 

ambient temperature; 
mean velocity of inner fluid; 
dimensionless coordinate (x/ri)/Pe; 

axial coordinate. 

Greek symbols 

4 thermal diffusivity of inner fluid ; 
I:, emissivity of outer pipe surface; 

% dimensionless coordinate, r/ri ; 
8, dimensionless temperature, (‘I’ - T,,)/ 

(7.1 - 7-x); 
B br dimensionless bulk temperature, (T, - T, )/ 

(T, - T,); 
B Wf dimensionless wall tem~rature, (T, - T, )/ 

(T, - 7-z); 
0, Stefan-Boltzmann constant; 

4:. function of Prandtl number, equation (5a). 

I. INTRODUCTION 

MOST ANALYSES of forced-convection heat transfer in 

pipes are predicated on the assumption that a great 
deal of information is known at the pipe wall. In this 
connection, it may be noted that prescribed wall 

temperature and prescribed wall heat flux are the most 
common boundary conditions for pipe-how heat- 
transfer analysis. If there is convective heat exchange 
between the outer surface of the pipe and a fluid 
environment, it is assumed that the value of the 
external heat-transfer coefficient is known a priori and 
is normally taken to be a constant. 

In reality, the amount of a priori information 
available is frequently less than that which is employed 
in pipe-flow heat-transfer analyses. For example, con- 
sider a fluid flowing through a horizontal pipe which _ 

-.- --. loses heat by natural convectton from its outer surface 

*Work performed when the author was an adjunct to a large external fluid environment. If the tempera- 
associate professor at the University of Minnesota. ture of the internal flow is higher than that of the 
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environment, both the bulk and wall temperatures will 

decrease in the flow direction. Since the external 
natural convection is controlled by the difference 
between the local wall temperature and the ambient 

temperature, the external heat-transfer coefficient will 
also decrease in the flow direction. However, the axial 
distribution of the wall temperature is not known a 

priori; rather, it is a result of the interaction between 
heat-transfer processes internal and external to the 
pipe. Therefore, in this situation, the external heat- 

transfer coefficient is not known (I priori. 
The foregoing discussion identifies one of the foci of 

the present research, namely, pipe-flow problems with 
interactively determined thermal boundary con- 

ditions. Specitic consideration is given to the very 
problem discussed above. A laminar, forced- 
convection how enters a horizontal pipe which is 

situated in an extensive fluid environment at tempera- 
ture T, Heat loss occurs at the outer surface of the 
pipe by natural convection. The resulting axial va- 

riation of the wall temperature afiects both the heat- 

transfer characteristics of the pipe flow and of the 
external natural convection. In the analysis presented 
here, the energy-conservation equation for the pipe 
flow is solved subject to a wall-boundary condition 

which accommodates the interactively determined 
variations of the natural convection heat-transfer 
coefficient. 

If the fluid external to the pipe is a gas such as air, 
then radiative transfer may supplement the natural- 
convection heat loss from the outside surface of the 
pipe. The extent of the radiative contribution depends 
on the emissivity of the surface and on the temperature 
level. Even for moderate temperatures, the radiative 

transfer will equal that for natural convection when the 
emissivity is y 1. Therefore, when the external environ- 

ment is a gas, a realistic thermal boundary condition 

for the pipe-flow problem should account for both 
natural convection and radiation. 

The second focus of the present research is to solve 

the forced-convection pipe flow subject to simul- 

taneous external natural-convection and radiation. 
The solutions involving radiative transfer will in- 
corporate the interactively determined variations of 
the natural convection heat-transfer coefficient. 

An appraisal of the governing equations reveals a 

superabundance of prescribable parameters. In the no- 

radiation case, there are three prescribable parameters, 
whereas with radiation there are a total of five 
parameters. In view of the lengthy numerical com- 
putations that are required for each case, the para- 
meter values were selected to be representative but not 
necessarily complete. 

In addition to the solutions discussed above (i.e. 
characterized by variable external convection without 
and with radiation), it was deemed appropriate, for 
comparison purposes, to obtain results for the case 
where the natural-convection coefficient is constant 
and prescribed a priori. These supplementary solutions 
will be designated as the constant Biot number 

solutions, and they were obtained both without and 
with radiation. 

A survey of the literature on forced-convection pipe 
flow did not reveal any prior work on either of the 

main lines of the present research. There is. of course, 
related work which forms the background for the new 
effects that were investigated here. The problem of 

laminar pipe flow with a constant, a priori prescribed 
external heat-transfer coefficient has been solved by a 
number of investigators using a variety of solution 

methods, for example [l 51. Laminar pipe flow with 
external radiation transfer (without natural convec- 

tion) has also been analyzed and solutions obtained by 

using several different approaches [h- Y]. 

2. AiVALYSIS 

2.1. Mathematicalformulation 
Consider a laminar fluid flow in a horizontal 

circular pipe in which x is the axial coordinate and r is 
the radial coordinate; the inner and outer radii of the 

pipe wall are ri and r,, respectively. At x = 0, the fluid 

temperature is uniform and equal to T,. For x > 0, the 

outer surface of the pipe is exposed to a fluid environ- 
ment where the temperature is T, (T, # T,). The 

environment is free of fluid motions except for the 
natural convection induced by the presence of the pipe. 

If the fluid is a transparent gas (e.g. air), it is enclosed 
by walls that are also at temperature T,. 

With regard to the velocity held in the pipe, it is 
envisioned that there is a hydrodynamic-development 
section upstream of x = 0. Therefore, in the heat- 

transfer section, the velocity profile is fully developed 
and equal to the Poiseuille parabola. 

The pipe wall is assumed to be highly conducting so 
that its temperature is circumferentially uniform at any 
cross section ; furthermore, the temperature drop 

across the thickness of the wall is taken to be negligible. 

Generalization of the analysis to include radial 
temperature variations across the wall thickness can 

readily be accomplished, but this would add still 

another parameter to the already excessive number 
that appear in the problem. The accounting of circum- 
ferential variations would change the entire nature of 
the solution task and is beyond the scope ofthe present 
research. 

The starting point for the analysis is the energy 
conservation equation for the pipe flow. By introduc- 
tion of dimensionless variables 

the energy equation becomes 

Note that axial conduction has not been included 
because low Peclet-number flows are not being 
considered. 
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The pipe-wall boundary conditions will now be 
examined, and attention will first be focused on 
external natural convection, without radiation. Since 
the wall temperature T, is circumferentially uniform, 
the external heat-transfer coefficient that is needed for 
the formulation of the boundary condition is the 
cir~~ferential-average value. This coefficient will be 
denoted by K&r+ to underscore the fact that it depends 
on the local wall-to-ambient temperature difference at 
x. Then, at any axial station x, 

-+%ri(~Tl~r), = i;,r,r,(T, - T,) (3) 

or, in terms of the dimensionless variables of (1) 

- (ae/‘@), = I = [~~~.@o)lkol (kolWw’2. (4) 
In this equation, kj and k, respectively denote the 
thermal conductivities of the internal and external 
fluids. 

The quantity in brackets in equation (4) is the 
circumferential-average natural convection Nusselt 
number corresponding to a yet undetermined tem- 
perature difference (If’,,, - T,),. At each axial station 
x, this Nusselt number can be associated with that for 
an isothermal cylinder with a uniform temperature 
difference equal to (T;, - T,),. From a consideration 
of the available information for natural-convection 
heat transfer about an isothermal horizontal cylinder, 
the recent correlation of Churchill and Chu [lo] 
appears to be the most encompassing. That correlation 
is especially useful because it covers, with a single 
algebraic relationship, Rayleigh numbers between 
10m6 and lo9 and all Prandtl numbers. The correlating 
equation is 

- 
Nu = 0.36 + 0.518Ra’~4/&Pr), (5) 

#(Pr) = [l + (OS59/Pr)9!‘6]4’9. (5a) 

It should be noted that #(Pr) varies only moderately 
with Pr, ranging from 1.32 for Pr = 0.7 to 1.0 as Pr --+ 
x (very viscous oils). 

In accordance with the foregoing discussion, equa- 
tion (5) is to be applied locally in the evaluation of the 
Nusselt number I;,,,(2r,)/k, that appears on the RHS 
of the boundary condition (4). Correspondingly, the 
Rayleigh number is interpreted as 

Ra, = &(I’, - T, ),(2rJ3/‘av (6) 

where all properties refer to the external fluid. If the 
dimensionless temperature B is introduced, Ra, 
becomes 

Ra, = ewxRal, Ra, = &(‘I’, - T,)(2r,)‘/ocv. (7) 

The Rayleigh number Ra, corresponds to the overall 
temperature difference (T, - T,) at the start of the 
heat-transfer section. This is the only temperature 
difference which can be identified prior to the solution 
of the problem since the wall and bulk temperatures 

* With RHS(8) denoting the right-hand side of equation 
(8). 

vary and are not known in advance. Therefore, Ra,, 
being known a priori, can realistically serve as one of 
the prescribable parameters. 

Upon returning to the boundary condition (4) with 
inputs from equations (5) and (7), there follows 

-(@‘&I),=~ = f[0.36+ 0.S18Ra::48~~/#f(k,/ki)8,, 

(8) 

Equation (8) is the tinal form of the boundary con- 
dition for the pipe-flow problem when the external 
heat loss is by natural convection. The novel feature of 
the formulation can be identified by examination of 
this equation. Since 8,x decreases with x, so does 0;: 
and, as a consequence, the natural convection Nusselt 
number [square bracketed terms of equation (8)] 
decreases with x, giving rise to an increase of the 
thermal resistance. It is in the accounting of this effect 
that the present analysis differs from prior studies of 
pipe flows with an external convective boundary 
condition. 

Further examination of the governing equations (2) 
and (8) reveals the presence of three prescribable 
physical parameters 

b, k,/k, Pr. (9) 

The number of computational parameters can be 
reduced by noting that the Rayleigh and Prandtl 
numbers are grouped together in equation (8) in the 
ratio Rai’4/#. 

When radiative transfer takes place between the 
outer surface and the environment, then an additional 
term has to be appended to the RHS of equation (8). If 
the pipe is situated in a space whose walls are at T,, 
and if the wall area is much larger than that of the pipe 
surface, then the radiation filling the space is black 
radiation corresponding to T,. Furthermore, if the 
surface of the pipe is gray with an emissivity s then the 
local radiative heat loss at x, per unit surface area, is 

as(T$, - 7-t). (10) 

When this expression is incorporated into the local 
heat balance at the wall, there follows* 

Upon introduction of the dimensionless tempera- 
ture B into equation (ll), there is obtained, after 
rearrangement 

-(%&%J),=, = RHS(8) + ($)r+j 

x i?w*(T,IT,, - I) + P2. (12) 

T,/T, - 1 

Examination ofequation (12) reveals that the account- 
ing of radiative transfer has added two additional 
parameters, namely 

eaTZrJ& 7’0,. (13) 



If KcT-~ is regarded as a radiation heat-transfer 
coefficient, then ~crT~r,/k, has the appearance of a 
radiation Nusselt number. The larger the value of this 
parameter, the greater the strength of the radiative 
transfer. The radiation contribution is also streng- 
thened by increasing values of T, ;+I-, provided that 

(I,, is not too small. 
Equation (2) along with either of the pipe-wall 

energy balances (8) or (12) constitute the governing 
equations for the pipe-flow problem with interactively 

determined thermal-boundary conditions. To these is 
added the initial condition f1 = 0 at s = 0. The 

solution methodology for these equations will be 

described shortly. 

2.2. Simpl$ed estrrnal-con~ectiorl model 
For comparison with the present results, solutions 

were also carried out for a simpler model of the 

external natural convection, namely. for the case in 

which the external-convection coefficient is uniform 

and known u priori. In implementing such a model, 
consideration has to be given to how the convection 
coefficient. which depends on 7‘,, - T, . is to be 

selected. As noted eat-her. T, - T, varies with s. 
beginning with an initial value T, - 7‘, at s = 0 and 

decreasing (i.e. when T, > T, ) to an a priori unknown 
final value at the downstream end of the pipe. Since T, 

- 7, is the only wall-to-fluid temperature difference 
that is known in advance, it will be used to evaluate the 

given constant value of h, which will be denoted by i% 
For convective heat loss corresponding to the 

uniform and known external coefficient h, the pipe- 

wall heat balance becomes 

- (?O.il)),, j = (hr,ikJOw,, 3 Bi o,, (14) 

which contains only one parameter, the Biot number 
Bi. When radiation supplements natural convection. 
equation (14) becomes 

x [L(T,:?‘, - 1) + 11” - 1 
l-,/T, - 1 

(Isj 

in which three prescribable parameters are in evidence. 
To compare the results from the constant Biot- 

number model with those for the moregeneral natural- 
convection model formulated earlier. Bi is evaluated 
from 

Bi = f (0.36 + 05t8Raj ‘~~)(k”iki) (16) 

and the radiation parameter of equation ( 15) follows 
from 

r:oTj, rJki = (CUT: r,Jk,)(k,/ki). (17) 

The values of Ru,, Pr, k,jk, and i:oTtr,/k, which 
(along with T,/T,) define a given case for the 
generalized problem were introduced into equations 
(16) and (17) to fix the comparison case for the 
simplified model. 

2.3. Solution methodolnyJ 
The numerical solutions were carried out by adapt- 

ing the Patankar-Spalding (P S) method to the 

governing equations of the present problem. Two of 
the adaptations will be discussed here. It should be 

noted that the Pi S method is an implicit marching 

procedure which is formulated to solve a set of iv linear 
algebraic equations at each forward step. Neither the 

convective nor the radiative boundary conditions of 
the present problem are linear, so that some adap- 

tation is needed. Provided that a sufficiently small 

forward step size AX is employed, the boundary 
conditions can be locally linearized in a simple fashion 

without significant loss of accuracy. For example, if 
computations are being performed at an axial station 
Xj, then the O,, that appears in the square brackets of 
equation (8) can be evaluated using the known value 

(i.e. known from the preceding calculations) of If, at 
.Y,_,. Although exceedingly small steps were em- 

ployed in the present calculations, it was decided to 
employ a more refined local linearization to ensure 

that no perceptible error would occur. 
To this end, let G(O,.,) denote any one of the 

expressions which appear on the RHSs of equations 

(g), {12), or (15). Also. for compactness. let 8, at Xj be 
Hj, and II,. at Xi_, be Oj_ i. Then, at Xj, the boundary 
condition can be approximated as 

-(?w:?r/),,’ i = G(Oj_ 1) + G’(n,_ ,)(flj - (I,_ 1) (18) 

where G’ = i’G;?fi,,,, represents the algebraic ex- 
pression obtained by differentiating G with respect to 
O,,. Since llj _ , is known from the calculations at the 
prior step, equation (18) is a linear form which is 

acceptable to the P-S method. By making Xj - .Yj_, 
sufficiently small, the error associated with the local 

linearization can be made altogether negligible, as was 
verified in the computations. 

The other adaptation had to do with ‘tuning’ the 
program with regard to both step size and deployment 
of the grid points. To this end, it was found useful to 

make comparisons with the eigenvalue solution of [2] 
for constant Biot number and no radiation. With only 
ten eigenvalues available, that solution is limited to the 

downstream portion of the pipe. In that region, the 
local Nusselt numbers from the present solutions 
agreed to within O.Ol”, with those from the eigenvalue 

solutions. The final computer runs were made with 200 
points in the cross section and at about 10000 axial 
stations. 

3. RESULTS AND DISCUSSION 

The cases for which numerical solutions were car- 
ried out are listed in Table 1. In the table, cases A, 
B,. , I refer to situations where the external natural 
convection is determined interactively. whereas A’, 
B’. . I’ are the corresponding constant Biot-num~r 
comparison cases. Solutions accounting for natural- 
convection heat loss were performed for each of the 
tabulated cases, and solutions involving simultaneous 
natural convection and radiation were obtained for the 
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Table 1. Parameter values for the computations 

Case k&i Rai “/cj Bi (k,lki)* 

A 1 2.4 
A’ 0.80 1 
B 1 1.5 
B’ 2.1 1 
C 1 13.4 
C’ 3.1 1 
D 1 23.9 
D’ 6.4 1 
E 1 42.5 
E’ 11.2 1 
F 0.05 13.4 
F’ 0.18 0.05 
G 0.2 13.4 
G 0.73 0.2 
H 5 15.9 
H’ 21.5 5 
I 20 15.9 
I’ 85.8 20 

Radiation cases T,/T, = 1.25, wTi,r,/k, = 1. 
* For input to equation (17) only. 

majority of these cases, as will be seen shortly. The 
tabulated values of Ra: “/+ are not simple integer-type 
numbers. This is because the computations were 
originally performed for specified values ofRa, and Pr, 
and the group Raii4/c$ was subsequently evaluated. 

Results will be presented for the axial distributions 

of three quantities : the local pipe-flow Nusselt number 

Nu, the local bulk temperature &, = (Tb - T,)/(T, - 

T, ), and the local wall temperature 8, = (T, - T, )i 
(T, - T,). The local Nusselt number is defined as 

Nu = h(2ri)/ki, h = q/(T, - T,) (19) 

where q is the local heat flux per unit inside pipe-wall 

area. 

The reason for presenting the wall- and bulk- 

temperature distributions in addition to the Nusselt 

number is apparent from equation (19). Since q, T,,,, 
and Tb are all unknown at any axial station, a 
knowledge of the Nusselt number (or h) is insufficient 
to determine any of these quantities. Rather, two 
among q, T,, and Tb have to be given in addition to 
Nu. 

3.1. Nusselt number disrributions 
Axial distributions of the local pipe-flow Nusselt 

number are presented in Figs. l-3. Figure 1 is for k,/ki 
= 1, that is, the same fluid inside and outside the pipe. 
Figures 2 and 3 are, respectively, for cases where k,/ki 
< 1 and k,/ki > 1. Each figure conveys results for 
numerous cases and it is, therefore, appropriate to 
describe the structure of the figures. 

Consider, for example, Fig. 1. The main part of the 

figure gives results at axial positions between X of 
0.002 and 1, while the inset at the upper right extends 

the results back to X = 0.0004. The curves are grouped 
according to the designations in Table 1, e.g. A,A’, B,B’, 
etc. with a given unprimed case being paired with the 
corresponding primed case. At the lower left, a legend 
describes the characteristics of each curve. The de- 
signation Ra, means that the external natural con- 
vection is determined interactively, while Bi means 
that the Biot number is prescribed and constant ; RAD 

and W/O RAD are self explanatory. Curves E,E’ are 
referred to the outer (leftmost) left-hand ordinate, 
while curves B,B’ refer to the inner left-hand ordinate; 

curves A,A’ are read from the right-hand ordinate. A 
similar structural description also applies to Figs. 2 
and 3. 

The major issues to be examined in Figs. l-3 are : (1) 

the response of the pipe Nusselt number to the axial 

.oo I ,006 

-8 
16 

I I-- Ra,,W/O RAD I 
4 

t t ----I 

--- Bi,W/O RAD -- ---a-_ 
I I I I I III I I II 

FK. 1. Local Nusselt-number distributions for cases A and A’, B and B’, and E and E’ (all with k,/k, = l), 
without and with radiation. 
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Nu 

LEGEND 

5 SEE FIG. I 

4 

Frr;. 2. Local Nusse~t-n~rn~r distributions for cases F and F’, and G and G’ (all with k,,/k, < 1 ), without and 
with radiation. 

variations of the interactively determined external 
natural convection, (2) the effect of external radiative 
transfer, (3) the existence or nonexistence of a ther- 
mally developed regime in the presence of external 
non-linear heat transfer, either by natural convection 
or radiation, (4) the effect of k,/k, Ru~‘~/c$, and Bi on 
the magnitude of Nu. 

Examination of Figs. 1-3 reveals that the cor- 
responding Ra, and Bi Nusse~t-number distributions 
are essentially identical, except in the far downstream 
region for certain selected cases. The Nusselt number 

26 

h 

is, therefore, insensitive to whether the external con- 
vection coefficient remains constant at its initial (i.e. x 
= 0) value or decreases with x as T, - T, decreases. 
This outcome is especially noteworthy since, as will be 
seen shortly, the ingredients which make up h do 
respond to the details of the external convection. 

An even more convincing demonstration of the 
forgiving nature of Nu (or h) to the external transfer 
may be seen by examining the effects of radiation in 
Figs. 1-3. It is seen that there are deviations between 
the with-radiation and noradiation cases in the lower 

7 6 
Nu 

6 5 

5 4 

---- 4 Bi, W/O RAD 

-.-L--I 
-002 * .Ol _I I 

X 

FG 3. Local Nuss~lt-num~r distributions for cases H and H’, and I and I’ (all with 4,/ki > l), without 
radiation. 
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ranges of the quantities Ra:‘“/q5 and Bi(k,/ki). The is, Nu decreases as either (k,/ki)(Rai’4/4) or Bi in- 
extreme deviation between the results is about 10% crease. The range of the decrease is within the afore- 
(cases A or A’). This deviation will be shown to be mentioned 19%. Radiation, which comes to greater 
moderate compared with the impact of radiation on prominence when Ru:‘~/~ or Bi/(k,/k,) is small, tends 
T, or Tb. to decrease the Nusselt number, but by 10% at most. 

Thus, from the foregoing, it appears that because of 
compensating variations among its component parts, 
the heat-transfer coefficient is relatively insensitive to 
the details of the external boundary condition. 

3.2. Wall and bulk temperature distributions 

There are a number of thermal boundary conditions 
which give rise to a thermally-developed regime in 
which Nu is independent of x, and all of these appear to 
be linear [ll]. The present solutions provide an 
opportunity of examining the possible presence of a 
constant Nusselt number regime when the boundary 
conditions are non-linear. 

Inspection of the downstream (large X) portion of 
Figs. l-3 shows that for non-linear natural convection, 
the curves (i.e. the Ra, curves) tend to attain a shallow 
minimum and then rise very gradually. For the largest 
X of the graphs, the deviations due to the rise are very 
small-just a few per cent. Interestingly enough, the 
presence of radiation does not, in itself, give rise to the 
just mentioned behavior. Indeed, for radiation and 
linear natural convection, the plotted curves are flat, 
although the higher significant figures of the computer 
print-outs show a tendency for Nu to increase with X. 
The existence of an apparent thermally developed 
regime in the presence of radiation is a major surprise. 

The results for the axial distributions of the wall and 
bulk temperature are presented in Figs. 4-10. The 
initial discussion will be focused on Figs. 4-6. which 
show results for k,ik, = 1 (same inner and outer fluid), 
respectively corresponding to cases A and A’, B and B’, 
and E and E’. When radiation is not taken into 
account, these results pertain to any fluid provided 
that the parametric values of Ru:‘~/~ or Bi are 
appropriate. The no-radiation results of Figs. 4-6 can 
be so interpreted. On the other hand, if comparisons 
are to be made between no-radiation and with- 
radiation results for otherwise identical conditions, 
then the external fluid must be a transparent gas. For 
concreteness in the discussion ofradiative effects, it will 
be assumed that the outside fluid is air (Pr = 0.7) and, 
correspondingly, for Figs. 4-6, the inner fluid is also 
air. 

The effect of the parameters on the magnitude of Nu 
will now be discussed. In [ll], for the case of Bi = 
constant and thermally-develo~d conditions, it was 
shown that Nu decreases with increasing Bi, the overall 
decrease of Nu being about 19% as Bi ranges from 0 to 
CC. Inspection of Figs. l-3 reveals a similar trend at 
any given axial station in thedevelopment regime ; that 

Figures 4-6 have a common structure. In each 
figure, the B,, and 0, curves for a specified non- 
radiative situation are plotted in the upper portion, 
and the 8, and 0, curves for the corresponding with- 
radiation situation are shown in the lower portion. The 
upper curves are referred to the right-hand ordinate, 
while the lower curves are referred to the left-hand 
ordinate. Solid and dashed lines are respectively 
employed to denote variable external natural con- 
vection and uniform external natural ~onv~tion. For 
the interpretation of the figures, it should be noted that 
the value of Raij4/4 and Bi are relatively small for Fig. 

FIG. 4. Wall- and bulk-temperature distributions for cases A and A’, without and with radiation. 
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FIG. 5. 

.OOOl .OOl .Oi .I I 

X 

Wail- and bulk-tem~r~ture distributions for cases B and B’. without and with 

4 and increase successively in Figs. 5 and 6. 
First considering Fig. 4 and focusing on the no- 

radiation case, it is seen that both the bulk and wall 
temperatures decrease rather slowly with X and that 
the difference between t&, and 0, is not very large. This 
is due to the relatively low rates of heat transfer 
associated with the weak external convection. When 
radiation is brought into play (lower diagram of Fig. 
4), it provides a much more effective heat-loss path 
than that provided by the external convection. As a 
consequence, both the wall- and bulk-temperature 
curves drop off more rapidly, especially the former. 

radiation. 

The importance of variable external convection is 
affected by the presence or absence of radiation. 
Without radiation, the results show some sensitivity to 
variable external convection, but when radiation acts, 
the external convection becomes of lesser importance, 
as does its variability. 

When the external convection is stronger (Fig. 5). 
the aforementioned trends are modified. In the no- 
radiation case, the wall and bulk temperatures drop off 
more rapidly than before. Furthermore. the effect of 
variable external convection is heightened, especially 
with regard to the wall temperature. The augmented 

Fro. 6. Wall- and buIk-temperature distributions for cases E and E’, without and with radiation. 
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FIG. 7. Wall- and bulk-temperature distributions for cases C and C’, and D and D’, without radiation 

role of variable external convection can be understood 

by examining the square bracket of equation (8) and 
noting that the role of the constant term is washed out 

as Rati4/4 is increased. When radiation is involved, the 

heat-transfer rates increase, causing more rapid 

changes in 8, and 13~; as before, the effect of variable 
external convection is muted. 

Figure 6 corresponds to a case of relatively strong 
external convection. The no-radiation situation shows 

rapid drop-offs in 8, and &, as well as moderately 
important influences of variable external convection, 
especially with regards 0,. When radiation is brought 

into play, its effect is much less than at lower values of 
Ru~/~/c$ or Bi. 

The presentation of results for the case of k,/ki = 1 

(same inner and outer fluid) is completed by Fig. 7. In 
this figure, 8, and 0, distributions are plotted for cases 
C and C’ and for cases D and D’, all for external natural 
convection without radiation. The trends in evidence 
in this figure are in agreement with those discussed in 
the foregoing paragraphs and need no elaboration. 
Figure 7 is included in order to provide information at 

a sufficient number of Ru:‘~/~ values to permit 
accurate interpolations. 
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FIG. 8. Wall- and bulk-temperature distributions for cases F and F’. without and with radiation 
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Fro. 9. Wall- and bulk-temperature distributions for cases G and G’, without and with radiation. 

Attention is next turned to situations where k,/ki # 
1. Consideration is first given to cases F,F’ and G,G’, 
which are characterized by k,,/k, < 0. The no-radiation 
results for these cases are applicable to any fluid 
combinations which match the parameter values, but 

for discussing the radiation results it is convenient to 
think of cases F,F’ as water inside-air outside and of 
cases G,G’ as oil inside-air outside. 

The wall- and bulk-temperature results for these 
cases are presented in Figs. 8 and 9 using a format 
identical to that of Figs. 4-6. The general trends in 

these figures are the same as those of the earlier figures, 

but certain details are worth noting. Owing to the 

relatively low values of (kJki) (Rcz:/~/c#I) or of Bi, the 
external natural convection is quite weak and the rate 
of heat loss is correspondingly low when radiation 

does not participate. Also, the results are moderately 
sensitive to variable external convection. When ra- 

diation acts, the heat-transfer rate is appreciably 

augmented as witnessed by the more rapid drop-off of 
the curves and the diminished sensitivity to variable 
external convection. 

Results for k,,/ki > 1 comprise the final item in the 

presentation of results--specifically, cases H and H’ 

.8 

.6 

X 

Fm. 10. Wall- and bulk-temperature distributions for cases H and H’, and I and I’, without radiation 
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and cases I and I’ of Table 1. These cases were selected 
to characterize the presence of a liquid external to the 
tube with a conductivity much higher than that of the 
internal fluid. Appropriately high values of (k,/ki) 
(Ru~“/c#J) and of Ei can be noted in Table 1. The main 
features of the results shown in Fig. 10 are the 
evidences of the high rates of heat transfer and low 
external thermal resistance. The wall and bulk tem- 
peratures diminish rapidly, and the wall temperature 
takes on values that do not differ much from those of 
the ambient. Thus, as an approximation, cases such as 
these can be treated as if the wall temperature were 
uniform and equal to T,. The variability of the 
external convection has little effect on the heat transfer 
rates (i.e. on 0,) because the major resistance to heat 
transfer is in the fluid flowing within the tube. 

4. CONCLUDING REMARKS 

One of the main findings that has emerged from the 
presentation of results is the insensitivity of the pipe 
Nusselt number to nonlinear external natural con- 
vection or to radiation. The Nusselt numbers are 
essentially the same regardless of whether the external- 
convection coefficient remains constant at its x = 0 
value or varies with x as r, - T, changes. When the 
external convection is weak, radiation tends to de- 
crease the Nusselt number slightly, with the change 
being lo%, at most. 

The nonlinear external convection appears to pre- 
clude a constant Nusselt number regime, as is nor- 
mally encountered in a thermally developed pipe flow. 
Rather, in the downstream portion of the pipe, the 
Nusselt number curve attains a shallow minimum and 
then rises slowly. The extent of the rise is, at most, only 
a few per cent at the farthest downstream position 
examined. The magnitudes of the Nusselt number are 
moderately affected by changes in either (k,/ki) 
(Ra:14/#) or Bi, decreasing as these quantities increase. 

The wall- and bulk-temperature distributions are 
generally more responsive to variable external con- 
vection than is the Nusselt number. The distribution 
curves for the variable-convection case drop off more 
slowly with x than do those for the corresponding 
constant Biot number case. Radiation has two in- 
fluences on the distributions. First, when radiation is 
present, the wall and bulk temperatures drop off more 

rapidly than when there is negligible radiation. Se- 
cond, radiation tends to diminish the sensitivity of the 
results to variable natural convection. The role of 
radiation is accentuated when the external convection 
is relatively weak. 
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CONVECTION FORCEE DANS UN TUBE HORIZONTAL AVEC 
A L’EXTERIEUR CONVECTION NATURELLE NON 

LINEAIRE ET RAYONNEMENT 

Rbum(-Une &tude de la convection thermique laminaire for&e dans un tube horizontal est men&e dans le 
cas de pertes externes par convection naturelle et rayonnement. La diffirence de tempkrature entre la paroi 
du tube et I’ambiance varie longitudinalement. Puisque le coefficient de convection naturelle dipend de cette 
diffkrence de tempirature, il varie lui aussi le long du tube et on en tient compte d’une faGon particuliire. On 
trouve que tant que le nombre de Nusselt est g&dralement inSensible $ la variation du coefficient de 
convection externe, ii n’existe pas un nombre de Nusselt constant de regime thermiquement ttabli. Ce 
rayonnement tend B diminuer le nombre de Nusselt du tube, mais le maximum d’effet est seulement proche de 
10%. Les distributions de temperature de la paroi et du fluide sont glnCralement plus sensibles a la 
convection externe variable que n’est le nombre de Nusselt. Cette sensibilitt diminue lorsque le rayonnement 

joue un rale important dans la perte thermique. 
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ERZWUNGENE KONVEKTION IN EINEM HORIZONTALEN ROHR IN 
VERBINDUNG MIT NICHTLINEARER NATORLICHER KONVEKTION UND 

MIT STRAHLUNG AUF DER AUDENSEITE 

Zusammenfassung-Der WBrmeiibergang durch erzwungene Konvektion bei laminarer StrGmung im 

waargerechten Rohr wurde untersucht, und zwar fiir den Fall, da13 das strSmende Fluid an die HuBere 
Umgebung durch natiirliche Konvektion und durch Strahlung Wlirme abgibt. Die Temperaturdifferenz 
zwischen der Rohrwand und der Umgebung andert sich entlang des Rohres. Da der Warmetibergangskoeffi- 
zient der natiirlichen Konvektion an der Aunenseite von dieser Temperaturdifferenz abhgngt, lndert such er 
sich iiber die Rohrlange. Die Beriicksichtigung dieser jlinderung ist ein besonderes Merkmal der Analyse. Es 
wurde gefunden, da13 ein thermisch ausgebildetes Profil mit einer konstanten Nusselt-Zahl nicht existiert, 
obwohl die Nusselt-Zahi der RohrstrGmung im allgemeinen doch unempfindlich gegeniiber Vergnderungen 
des PuBeren W~rme~berganges ist. Die Strahlung neigt dazu, die Nusselt-Zahl der Rohrstr~mun~ zu 
erniedrigen, wobei die maximate Auswirkung aber nur lOgb betrggt. Die Verteilung der Wand- und der 
Mitteltemperatur hiingen im aligemeinen stlrker als die Nusselt-Zahl von ver~nderlicher iunerer 
Konvektion ab. Diese Abhiingigkeit vermindert sich jedoch, wenn ein wesentlicher Teil der Wgrmeverluste 

durch Strahiung verursacht wird. 

BbIHY)KflEHHAx KOHBEKUMII B TOPM30HTAJIbHOti TPY6E B YCJIOBMFlX 
HEJIHHERHOti BHEIIIHEI? ECTECTBEHHOR KOHBEKLIMM M M3JIY’JEHMFI 

Awmauna - npoeenew akianw3 nahtmrapnoro nepeHoca Tenna sbreyxneesoi? KonBeKulieii B ropmo~- 

‘TaJlbHOii -rpy6e a CnyWe, KOJLla IlCPeHOC T’SlJKi OT nOTOKa 2SnKOCTW B Tpy6e BO BHeUlHH)K) OKpywta- 
rOmyto CpeBy npOEiCX0nH-r eCTeCTBeHHOi? KOHBeKWieii H H3JlyYeHHeM. Pa3HOCTb TeMnepaTyp MeWly 

CTeHXOii Tpy6bI li OKpy~aiom& CpeDOii H3MeHRSaCb n0 AJlkiHe rpy6bt. nOCKOflbKy xO+$HUHeHT 

mezuHeJ0 ‘JennOO6MeHa ecrecTsemioA KoHBexusfeii 3amcm 0T pa3Hocm -iehmepaTyp. 0~ raXxe 

83MeHzinCx n0 3JINHe fpy6bI. Y’leT 3TOJO I(3MeHeHHR COCTaBJlReT oCO6eHHOCTb PaCCMOT~HHO~ 3a,QaW. 

TaK xaK ~NCJIO Hyccenbra nng Tpy6bt ROSTH He mMemeTcx c ~3MeHeH~eM xo3~~~~~e~Ta BHemrero 

XOHBeKT~BHOJO Tennoo6hieHa. TO TepM~~eCK~ pa3BWTbIii pe2iGiM C n~TOKHHb1~ ‘fHC,‘lOM Hyccenbm 

o’rcyrcreoean. I?3nyYeHEe no~mXan0 3HaqeHHe sEWIa Hyccenb-ra anx Tpy6b1, HO He 6onee 4eM Ha 

10 “<, &i3MeHeH3ie BeIIKYZiHbI BHeIIIHeJO KOHBeKTIiBHOJO IlOTOKa TeRna OKa3bIBanO 6tmbmee B,SSlHEIe 

Ha npof@ni reMneparypb1 CTeHKW A noToKa. sebi Ha 3tiaqe:NHx qricna HyccenbTa. 3ro anH%riHe 

CHWEaeTCII c yeeneveHseM nOTcpb renna H3nyreHHeM. 


